domingo, 18 de novembro de 2012

Integrais
Integrais indefinidas
Da mesma forma que a adição e a  subtração, a multiplicação e a divisão, a operação inversa da derivação é a antiderivação ou integração indefinida.
Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).
Exemplos:
  1. Se  f(x) = , então é a derivada de f(x). Uma das antiderivadas de f'(x) = g(x) = x4 é .
       
  2. Se f(x) = x3, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3.
       
  3. Se f(x) = x3 + 4, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3 + 4.
   
   Nos exemplos 2 e 3 podemos observar que tanto x3 quando x3+4 são integrais indefinidas para 3x2. A diferença entre quaisquer destas funções (chamadas funções primitivas) é sempre uma constante, ou seja, a integral indefinida de 3x2 é  x3+C, onde C é uma constante real.

 Propriedades das integrais indefinidas
    São imediatas as seguintes propriedades:
1ª.    , ou seja, a integral da soma ou diferença é a soma ou diferença das integrais.
2ª.   , ou seja, a constante multiplicativa pode ser retirada do integrando.
3ª.    , ou seja, a derivada da integral de uma função é a própria função.

 Integração por substituição
Seja expressão
Através da substituição u=f(x) por u' = f'(x) ou , ou ainda, du = f'(x) dx, vem:
,
admitindo que se conhece .
O método da substituição de variável exige a identificação de u e u' ou u e du na integral dada.
   

Nenhum comentário:

Postar um comentário